Software Reliability Analysis Tools

Joel Henry, Ph.D.

University of Montana

Outline

- Background
- MATLAB Automated Testing Tool
- Graphical Input Specification Tool
- Real-Time Analysis Testing Tool
- Status
- Conclusion

System Development

Example: Wind Tunnel Software

- Controls devices that control:
 - Wind generator
 - Model support
 - Tunnel atmosphere
- Emphasizes reliability and safety
- Utilizes multiple development strategies
- Based on simple structure

System Development

Simple Structure

ALGORITHM

Sample Inputs Run Software Update Outputs

Testing Problems

- Size
 - Input variables sampled over time
 - Outputs variables produced over time
 - Sample time variable or set frequency
- Requirements
 - Input file/matrix
 - Output file/matrix
 - Analysis tools
- Domain determinants
 - Input variable minimum, maximum, and accuracy
 - Output variable minimum, maximum, and accuracy
- Test requirements
 - Input file/matrix with all possible values for input
 - Output file/matrix much more complex problem

Solution Approach *Overview*

- Automation to:
 - Generate large input matrices/files
 - Perform simulation and/or test auto-generated code
 - Analyze output matrices/files
- Methods to:
 - Evaluate domain coverage
 - Aid debugging
 - Evaluate results

Solution Approach

MATLAB/Simulink Environment

Source Code

Compile/Link

Simulation

Suite of testing tools

Generate Tests Simulate Model Test Auto-code **Detect Faults Evaluate Results**

Verification and Validation Methodology

Executable Code

Tests

Solution Approach

Verification and Validation Methodology

MATLAB Automated Testing Tool

- Creates test data
- Executes simulation or test
- Captures results
- Detects exceptions
- Saves test data or complete test results

Inputs

- Set test running time
- Select and configure tests using 31 test types
- Now supports non-scalar inputs*

States

Assign Starting values for state blocks*

Outputs

- Set output accuracy and exception ranges
- Now supports non-scalar outputs*

New Exception Types

- Percent change*
 - Allows exception detection if the output value changes more than a specified percent over a specified number of steps
- Absolute change*
 - Allows exception detection if the output value changes more than a specified amount over a specified number of steps

MATT – Simulate

- Set up simulation and code generation options
- Simulate:
 - Model
 - Auto-generated Code
 - Compare both

MATT – View Results

- View input values for every time-step
- View output values for every time-step
 - Steps causing exceptions are highlighted red*
- View/edit output exception info and settings

MATT – Advanced Exceptions*

- Advanced Exceptions allow exception detection based on multiple exception criteria
 - A combination of output ports
 - Disjoint ranges
 - Create separate A.E definition for each range that needs to be tested
 - Do a combinational process based on all the A.E definitions
 - Overall system reliability
 - Create multiple A.E definitions based on system specifications
 - Perform a combinational process based on all the defined Advanced Exceptions

MATT – Advanced Exceptions

Combination of output ports

- In the example shown below, an exception is said to have occurred when:
 - Stick output is between 5 and 10
 - Alpha output is greater than 20 rads
- After clicking the *process* button, one discovers:
 - 7 exceptions occurred from the given exception definition
 - The time steps where the 7 exceptions occurred
 - The output values that produced the 7 exceptions

MATT – Advanced Exceptions

Disjoint Ranges

- In this example, two separate exception definitions are specified:
 - (1) Alpha producing values between 0 4 rads
 - (2) Alpha producing values between 15 19 rads
- These two exception definitions are combined, and exception results are calculated in aggregate.

MATT – Advanced Exceptions

Overall System Reliability

By combining multiple A.E. definitions, systems can be stress-tested for accuracy and reliability.

MATT - Storage

- Save complete test setup for future use
 - Input, State, and Output settings
 - Advanced Exception Setting
 - Input Matrix
 - Output Matrix
- Import and export custom input matrices
 - Comma delimited files (*.csv)
 - MATLAB data files (*.mat)

GIST

- Reads MATT test data files
- Allows freehand specification of test data
- Saves new MATT test data files

GIST – Manage Input Sets

- Add/Remove inputs for altered models
- View graphs of any input
- Edit any input

GIST – Edit Inputs

- Use simple click and drag to create new input values
- View original input values as drawing

RATT

- Reads MATT test result files
- Calculates reliability, probabilities, and completeness measures
- Supports analysis of multiple test files (test suite)
- Exports to MS Excel and populates analysis charts and graphs

RATT - Analysis

- Load several MATT test files at once
- Perform analysis
 - Input coverage
 - Output coverage
 - MTTF
 - Probability of failure
 - Etc
- View simple results in RATT

RATT - Excel® Tool

- Load RATT files into Excel®
- View graphs showing coverage
- View coverage on multiple inputs/exceptions at the same time

Current Status

- Windows and UNIX versions of MATT ready
- Windows versions of GIST and RATT ready
- Working with STEREO project
 - Testing MATLAB/Simulink® models using MATT

Upcoming Functionality

MATT

- View intermediate state values from simulation
- Create and use custom test-types
- Load models inside MATT
 - Allows MATT to launch outside of MATLAB®

GIST

- Being integrated into MATT for more seamless use
- RATT
 - Being revised to accommodate Advanced Exceptions

Conclusion – Testing Enhanced

- Using software tools to aid testing allows
 - More tests to be run
 - Each test to be run more quickly
 - Test results to be easily stored and referenced

Conclusion – Tools Enhanced

- Improved MATT capabilities allow
 - Systems to start at any state with ease
 - More advanced exception catching

Questions and Contact Info

- Joel Henry
 - <u>henryj@cs.umt.edu</u>
 - MATT, RATT, and GIST
 - http://www.cs.umt.edu/RTSL/matt/
- MATLAB and Simulink users

